Design and experiences

Automation for
brown field
networks

— Allan Eising
— DKNOG12




Agenda

— Designing scalable automation

— Integrating scalable automation
Into existing networks

\



About me

— 15+ years of operations and development experience in business service provider networks
— 15+ years of dreaming of a "Provision” button

— Working as an architect in the network automation realm at Telia Company

— Living and working in Norway for 5 years

— Started this thing called DKNOG

— https://automate.network

— @allaneising on twitter

\


https://automate.network/

T




Goal

— Replacing the full system stack
after a merger

— Writing new network
automation but import old
services

— Ensure migrated services are
produced as close as possible
to their old counterparts

— Platform:; Cisco NSO

\



Service target

B2B services are
not trivial to
automate

— High degree of bespoke
— Complex solutions

— Interworking between different
technology generation and platforms

— Blurred lines between transport
parameters and service properties

— Documentation often lacking

\



Desired architecture

— |deal architecture
— Less can do fine

— Not in picture: BSS, sales,
assurance, etc.

\



Intent-based
Orchestration




Bottoms up!

— Let’s imagine we want to
configure an internet service

interface GigabitEthernet(0/1
ipv6o address 2001:db8::1/64

]

\



Bottoms up!

— Let’s imagine we want to
configure an internet service

— Usually we do this by some
sort of template

interface {{interface}}
ipv6 address {{ip}}/{{prefix}}

! ¢

\



Bottoms up!

— Let’s imagine we want to
configure an internet service

— Usually we do this by some
sort of template

— An activator is responsible for
filling out the template

Activator

interface = GigabitEthernet0/1
ip = 2001:db8::1
prefix = 64

interface {{interface}}
ipv6 address {{ip}}/{{prefix}}

! ¢

\



Public API

— What happens if the customer
has to move?

— |s it still the same service?

"service id": 1,
"parameters": {
"device": "PEO1",
"interface": "GigabitEthernet0/1",

"ip": "2001:db8::1",
"prefix": 64

\



Intent vs state

— The northbound systems
communicate intent to the
activator

— “l want an internet service with
IPvé6”

— The southbound systems
manage state in the network

— “IPv6 address 2001:db8::1/64
should be present on interface

GigabitEthernet 0/1 on node

X”

Order Manager

[
Intent

I

Activator

State

\



Resolving state

— The order manager is
oblivious to technical
implementation

— The Activator implements an
endpoint oriented API

— The endpoint is a pointer to a
logical interface

— The Activator decomposes the
service and resolves the
needed resources

— The activator requests the
needed resources from the
Resource Manager (ROM)

Order Manager

Service = internet
Family = ipv6
Endpoint = #100

Activator

—— 1 ipv6 pleasel —>

< 2001:db8::/64 —

Resource
manager

interface
ip

2001:db8::1
prefix = 64

GigabitEthernet0/1

interface {{interface}}
ipv6 address {{ip}}/{{prefix}}
!

\4

L
P

\




Service modeling

13vpn VRF12345
access 10000

bandwidth
— We have modeled three up 100m
dff t . . down 100m
ifferent services: coloreets 1
— Business internet/transit ipv4
— L3VPN 192.0.2.0/31
— L2VPN point-to-point ipve6
. . ) . 2001:db8::/64
— To the right is a simplified endpoint 642a0el7-749c-45de-a010-5039£558£62¢
example of a L3VPN service subnet 10
routing
— We use YANG to model, static
hence the hierarchy 198.18.0.0/24

) ) next-hop 192.0.2.1
— This model is further

enhanced with overrides for
various default/inherited
parameters

\



Truth

It cannot be understated how
impossibly hard it is to perform clean
data migration

\



Goal

We need to be able to recreate all
our services just from our
documentation

\



Pick an
approach

— Exact output
Or
— Functional equivalence

\



output

— Our starting point
— Replicating existing service
configuration 1:1

— Success rate can be measured

— Requires a consistent
foundation

— May not be automation friendly
— Takes longer time

\



Analytics

— Using dry-runs of the service
logic, we loaded the entire
service fleet into a pre-
production environment.

— We scored the line of output for
each service into three
categories:

1. InSync
2. Safe changes
3. Unsafe changes

\



Safe and unsafe changes

— Safe changes are changes that have no
negative impact on the service intent

— This includes things like interface descriptions
not matching

— Also includes examples where the network was
incorrectly provisioned

— Unsafe changes are everything that requires
human verification

— The could be due to incorrect documentation

— |Incorrect IP addresses

— VLAN mismatches

— Shaping rates not matching
— Etc.

— This also uncovers bugs in the automation.

\



Functional
equivalence

— Best done after go-live

— At some point you are forced to
simplify

— This breaks your ability to rely
on the dry-run reports as a KPI

\



Human or automation friendly?

— Avoid things like apply-groups and free-form comments in service configuration!
— Keep service configuration as self-contained as possible

— Unsafe inheritance between services
— Concepts that made manual configuration easier are often counter-productive when automating.

\



Realization challenges

— Various differences between cisco platforms are
extremely frustrating

— Table on the right shows various levels of flow-
control support on some Cisco Switches

— Solved with various capability flags to signal special
behaviors

Platform

WS-X4516-10GE

WS-X4248-FE-SFP

WS-X4306-GB

ME-3400G-12CS-D

WS-C3550-24-SMlI

ME-4924-10GE

supported

Not supported
Supported
Support, default off

Supported, default off

Supported

supported

Not supported
Supported, default off
Unsupported
FastEthernet:
unsupported

GigabitEthernet:
supported

Supported, default off

\



Go live hypercare

Be prepared to deliver extra support
for up to half a year after go-live

\



Wrapping up

| have many warstories best taken
over a cold beer

\



Let’s take questions instead!

\



Thank youl



