
Nine mistakes I've
done while
building network
automation

Allan Eising
For DKNOG13



Why this talk?

”Learn from the mistakes of others. 
You can’t live long enough to make 
them all yourself”
- Eleanor Roosevelt



About Me

— Worked in the service provider industry for 17 years

— Worked full time with network automation for three years now

— Lead developer and architect, automation team at Telia Company

— Primarily responsible for common architecture, and Norway as a country

— Co-founder of DKNOG

— Semi-dead blog: https://automate.network

— Twitter: @allaneising

— Mastodon: @eising@noc.social

— Made a lot of mistakes

https://automate.network/


Are mistakes bad?

— Maybe…

— Nothing is impossible to fix, but not all mistakes are possible to fix for me personally.

— It is mostly temporary solutions that end up being permanent. Not mistakes.



9 mistakes and some possible 
solutions



Not testing my 
automation on 
real hardware

Mistake #1



Mistake #1
Not testing my automation on real hardware

“I tested using virtual routers”

“I tested using simulated routers”

“My code broke when it hit production”



Mistake #2
Thinking I understand all the details

“I’m a network engineer. I know how this works”

”My code assumed something that was untrue 
and now we have a hard to find bug”



Possible solutions

— Get a lab

— Insist on getting a lab
— (Don’t) test in production

— Involve your experts early

— Give your experts time to test your code 
(preferrably in a lab)

— Write the business logic into your code

— Be humble



Mistake #3

The golden hammer



Mistake #3
The golden hammer

“We’re using [framework] for everything”

”Even though it doesn’t support it, we’ve made [application] do it anyway”

”We pay a lot of money to [vendor], so we must use their [thing]!”

“Our solution has become way too complex!”



Mistake #4
Building too much complexity into my code

“Network engineering is complicated, and so is the automation”

“I’m executing complicated workflows from inside one application”

“This corner case is taking up the majority of my code”

“My colleagues are avoiding me at lunch”



Possible solutions

— Who did this to you?

— Explore new ways of doing things.

— Build your applications with flexibility in mind

— Talk to your industry peers and learn new approaches

— Refactor your code early and often, or start over fresh

— Identify if your logic is better solved with smaller components and an central orchestrator

— Have a test suite



Mistake #5

The lone cowboy



Mistake #5
The Lone Cowboy

“I made something cool and now it’s part of production”

“I have a different role, so I made it in my spare time”

“The thing broke and nobody are able to help me”



Mistake #6
Poor code quality

”My stack has grown too big and it is failing randomly”

“Unknown exceptions happen that make no sense to users”

”My code is hard to read, my colleagues can’t help me”

“My code is hard to understand, so I won’t let anybody help me”



Possible solutions

— Try not to write business critical software alone

— Don’t give your spare time to work for nothing. 

— Try to sell it off as a project with proper time 
allocations.

— Make your manager your ally early

— Use code linting, unit tests, auto formaters, etc. 

— Look up a code styleguides. 

— Hold code reviews regularly

Python links

Google Python Style Guide: http://google.github.io/styleguide/pyguide.html

Black autoformater: https://github.com/psf/black

Python Language Server: https://github.com/python-lsp/python-lsp-server

http://google.github.io/styleguide/pyguide.html
https://github.com/psf/black
https://github.com/python-lsp/python-lsp-server


Mistake #7
Automatic tests that don’t test realistic scenarios

“I made up my test data myself”

“I test my services one at a time”

“I just mock the APIs of the systems I integrate with”

”My services didn’t work with real-world data”

“The systems didn’t respond like I thought they would”



Possible solutions

— Create an integration test environment

— Try to replicate what the users are doing in your tests

— Get real-life data from your users or experts and use that in your tests

— Test services in combination, not just create, but also delete and update



Mistake #8

Not listening to my users



Mistake #8
Not listening to my users

“I built the system, so I know best how to use it”

“Why can’t the users read my mind?”

“Why don’t they read the documentation?”

“They broke everything because they didn’t read the warnings!”



Possible solutions

— Treasure the user who doesn’t read the documentation and breaks things

— Make sure to log all interactions and provide ways to revert breaking changes

— Talk to your users often and understand how they are using your tools

— Consider doing small videos complementing your text documentation

— Consider classroom training



Mistake #9

Not making mistakes



Mistake #9
Not making mistakes

“I don’t take risks, but I don’t achieve very much”

“I worry too much about failing to even start”

”I overthink my solutions and will never be done”

“I only read the mistake slides in this presentation. Were there 
solutions too?”



Possible solutions

— Start small, define an MVP

— Think about how to test your solutions

— Make yourself accountable

— Allow yourself to fail and learn from the experience

— Find networkers at NOG events and listen to their war stories

— Tell about your mistakes at NOG events



Thank you!


