
Brown Field Services
and Interior Design

What color is your IP Address?

Allan Eising

Network Automation Architect

Disclaimer Most challenges in this presentations
are common to service providers.

A few are very specific to Cisco NSO’s

approaches.

Everything should be useful generally.

Service automation
and interior design

Greenfield

— In this scenario we start from a

clean slate

— The walls in this room are

unpainted, and no furniture
exists

Service

We then describe our desired state:

— Three chairs
— One table
— A sofa
— The walls should be green

What changed?

— When we’re done we can look at

the steps we took to get there

Furnishing

— The actions we took are

important

— Here:
1. Paint the walls green
2. Add the furniture

Create, modify,
delete

— If we remember how to go from

the empty room to the desired

state, we can do the opposite

too:

1. Remove the furniture
2. Paint the walls back to their

original color

— Now we know how to add and
how to remove

— Modifying the room came for

free

Network automation

The act of
transforming the

current state
into the desired state

Confused?
Let’s try again…

Service

— Service automation should be

declarative

— It describes how network state

should look, e.g.,
— Bandwidth
— IP addressing

{

 "service": {

 "endpoint": "214002eb-a48f-49f7-9bf2-18dddf2f7b45",

 "bandwidth": "100m",

 "ip-addresses": [

 {

 "family": 6,

 "address": "2001:db8:f00::/56",

 },

 {

 "family": 4,

 "address": "192.0.2.1/30"

 }

]

 }

}

“Furnishing”

— To get the network to the

desired state, a number of steps

will be taken

— We find the end-point and then:
1. Add the ipv6 address
2. Add the ipv4 address
3. Add the QoS policy

interface GigabitEthernet0/0/1/0

 ipv6 address 2001:db8:f00::/56

!
interface GigabitEthernet0/0/1/0

 ipv4 address 192.0.2.1/30

!
interface GigabitEthernet0/0/1/0

 service-policy input CUSTOMER_100M

 service-policy output CUSTOMER_100M

!

Create, modify,
delete

— If we record how to go from the

interface as it was to the desired

state, we can do the opposite

too:

1. Remove the addresses
2. Remove the service policy

— If we modify the service, we just

have to reverse your steps, and
start over

interface GigabitEthernet0/0/1/0

+ ipv6 address 2001:db8:f00::/56

+ ipv4 address 192.0.2.1/30

+ service-policy input CUSTOMER_100M

+ service-policy output CUSTOMER_100M

 !

interface GigabitEthernet0/0/1/0

 no ipv6 address 2001:db8:f00::/56

 no ipv4 address 192.0.2.1/30

 no service-policy input CUSTOMER_100M

 no service-policy output CUSTOMER_100M

!

Network automation

When removing a service the

desired state should be the state

prior to activating the service

It’s never that simple…

Brown field scenarios

Brown field

— What if instead of an empty

room, there is already something

in it?

— The walls could have a different
color

— Some furniture is already there

— Some of it may be expected,

some not
— like the bookcase

Reaching the
intended state

— Our orchestrator should apply

the desired state on top of the

room as we found it

— The walls will be re-painted to
green

— the missing two chairs will be

added

— The sofa will be added

— But the bookcase will remain

untouched

Removal

— When moving out, we should

restore the room to its original

state

— Including the old paint and the
furniture that was already there

— Just like renting an appartment

How does that apply to network automation?

The brownfield network

— Most networks are full of customer services created in the past

— These could have been made by hand or with some other tools we don’t use anymore

— Just like our rooms have furniture, our network devices has configuration already

— Just adding no in front of all our commands is no longer good enough

— Our documentation may help us

Reaching the
intended state

— Our orchestrator should apply

the desired state on top of the

current state

— For example:
— The IPv6 address will be changed

to the right one
— the missing IPv4 address will be

added
— But the mtu will remain

untouched

interface GigabitEthernet0/0/1/0

 mtu 9216

 ipv6 address 2001:db8:ba0:1234::/64

 service-policy input CUSTOMER_100M

 service-policy output CUSTOMER_100M

!

interface GigabitEthernet0/0/1/0

 mtu 9216

 ipv6 address 2001:db8:f00::/56

 ipv4 address 192.0.2.1/30

 service-policy input CUSTOMER_100M

 service-policy output CUSTOMER_100M

!

Service Diff

— We still only record what

changed in the network state

— What wasn’t changed during

creation, will not be touched
during deletion

interface GigabitEthernet0/0/1/0

- ipv6 address 2001:db8:ba0:1234::/64

+ ipv6 address 2001:db8:f00::/56

+ ipv4 address 192.0.2.1/30

!

Unexpected and expected existing states

Expected/safe
— Default configuration on interfaces
— Automatic configuration done by the platform

Unexpected/unsafe

— Wrong interface recorded in documentation
— Old configuration not entirely removed
— Overwriting an undocumented service

interface GigabitEthernet0/0/1/0

 description UNUSED_INTERFACE

 mac address-group PROTECT in

 no ip address

 shutdown

!

What if it was right
from the start?

— When the automation is run, it

has nothing to do

— Once the service is deleted,

there are no steps to reverse

— This means that the service is

removed, but the result of the

service is still in the network

— We thought we removed the

service, but it is actually still

there!

Ownership

— If the sofa was there before, we

need to take over the ownership

— If there’s an unexpected item,

we need to remove it

Ownership

— You shouldn’t take over too

much

— We don’t want to tear down the

whole room if there are still
things inside it

What about the
bookcase?

— You need to choose what to do

with the elements that are not

part of your service

— Keep or remove?

— The bookcase is easy

— In reality it might be more

complicated

Claiming ownership

— We also need to track who has a

claim to each item

— Each item our service created

from scratch is owned by 1

— If a service wants to add

something that is already there,

it adds 1 to the counter

— An item should be removed if

nobody owns it anymore

1

1

1

1

1

1

Backpointers

— Ownership should be public

— Each claim to an item should

come with an identifier

— Each service leaves its address

on each item

— This allows us to tie the ref-

count to the actual services

1: /my/service{1}

1…

1…

1…

1:
…

1…

Service meta data
Ref-count: 2

backpointers
• Service 1
• Service 2

Brownfield

— If something already exists, it will

get a ref-count but no

backpointer

— The bookshelf is not part of the
service, so it will have no ref-

count

— Original values of items changed

should also be recorded

— In NSO: “re-deploy re-concile”

1

1

1

2

2

2

Service meta data
Ref-count: 2

backpointers
• Service 1

Service meta data
Ref-count: 2

Original value
Blue

Reconciliation

Let’s settle the differences

Who is right?

— Was the wall actually supposed

to be blue?

— How many chairs did the

customer actually want?

— Did the customer actually order

a book case but we didn’t

support that in our standard

product?

— This requires some insight in to

the customer order

Who is right? (with proper
examples)

— Was the wall vlan actually

supposed to be blue 101?

— How many chairs megabit/s did

the customer actually want?

— Did the customer actually order

a book case OSPF but we didn’t

support that in NSO or our

standard product?

Who is right? (with proper
examples)

— Was the wall vlan actually

supposed to be blue 101?

— How many chairs megabit/s did

the customer actually want?

— Did the customer actually order

a book case OSPF but we didn’t

support that in NSO or our

standard product?

The
documentation

is wrong

The network is
wrong

Challenge at scale

— Some of the original states might

have been correct

— Some are obviously incorrect

— But it may be hard to tell without

knowing

— There may be thousands of

services to analyze

Service analysis

— We expect all existing services to

be correct

— We expect the current state to

match the desired state

Service analysis

— If this is true, nothing will be

done

— If it is not, the actions tell us

about a deviation

How do we solve it?

— We can do this at scale

— We can use ”commit dry-run” or

work with virtual routers

— Any deviation should be

analyzed and categorized

— Some changes might be safe and

unimportant

— Other changes might indicate

something larger

Making it user friendly

— Our first version was a python

script that wrote text files

— Now we are building a tool to

make it easy

— Here we can process large

batches of services on top of a

production copy

— The services with differences can

be processed

Processing a service

— The operators can drill down on

individual services

— They can adjust the service

parameters to match

— Or approve or reject the service

as it is

Summary

— The key challenges to brown field automation concerns

— Reconciliation of differences
— Ownership of configuration

— If your services own too little, they won’t clean up after themselves

— If your services own too much, they can cause major outages

Summary

— You should analyze if existing services match what is currently in the network

— This can be done with dry-run simulations

— Deviations should be analyzed carefully

— Use your network delivery engineers. They are experts in this field.

Thank you!

Questions?

	Slide 1: Brown Field Services and Interior Design
	Slide 2: Disclaimer
	Slide 3: Service automation and interior design
	Slide 4: Greenfield
	Slide 5: Service
	Slide 6: What changed?
	Slide 7: Furnishing
	Slide 8: Create, modify, delete
	Slide 9: Network automation
	Slide 10: Confused? Let’s try again…
	Slide 11: Service
	Slide 12: “Furnishing”
	Slide 13: Create, modify, delete
	Slide 14: Network automation
	Slide 15: It’s never that simple…
	Slide 16: Brown field
	Slide 17: Reaching the intended state
	Slide 18: Removal
	Slide 19: How does that apply to network automation?
	Slide 20: The brownfield network
	Slide 21: Reaching the intended state
	Slide 22: Service Diff
	Slide 23: Unexpected and expected existing states
	Slide 24: What if it was right from the start?
	Slide 25: Ownership
	Slide 26: Ownership
	Slide 27: What about the bookcase?
	Slide 28: Claiming ownership
	Slide 29: Backpointers
	Slide 30: Brownfield
	Slide 31: Reconciliation
	Slide 32: Who is right?
	Slide 33: Who is right? (with proper examples)
	Slide 34: Who is right? (with proper examples)
	Slide 35: Challenge at scale
	Slide 36: Service analysis
	Slide 37: Service analysis
	Slide 38: How do we solve it?
	Slide 39: Making it user friendly
	Slide 40: Processing a service
	Slide 41: Summary
	Slide 42: Summary
	Slide 43: Thank you!

