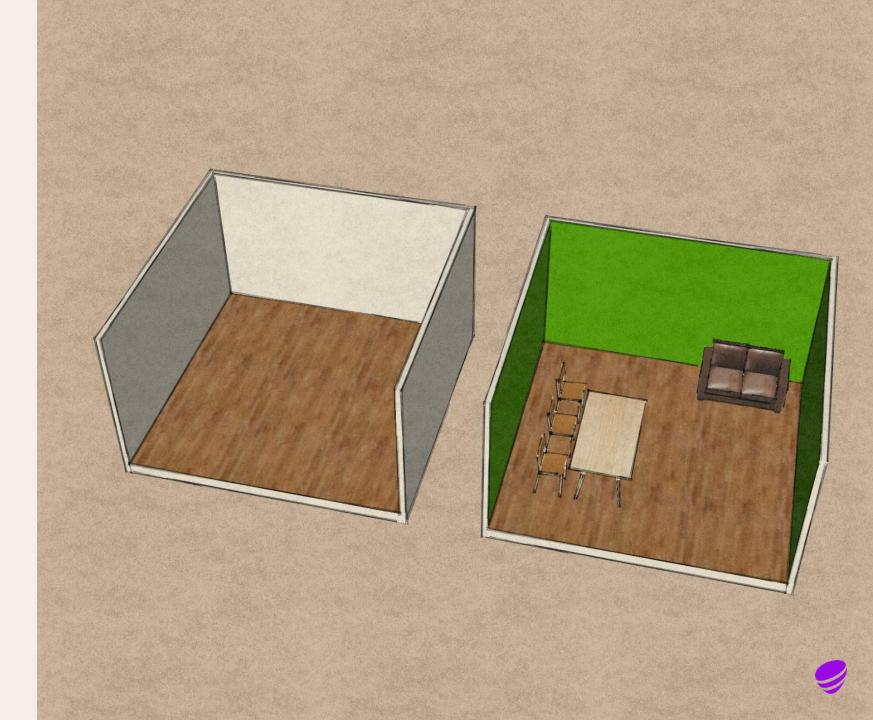
Brown Field Services and Interior Design

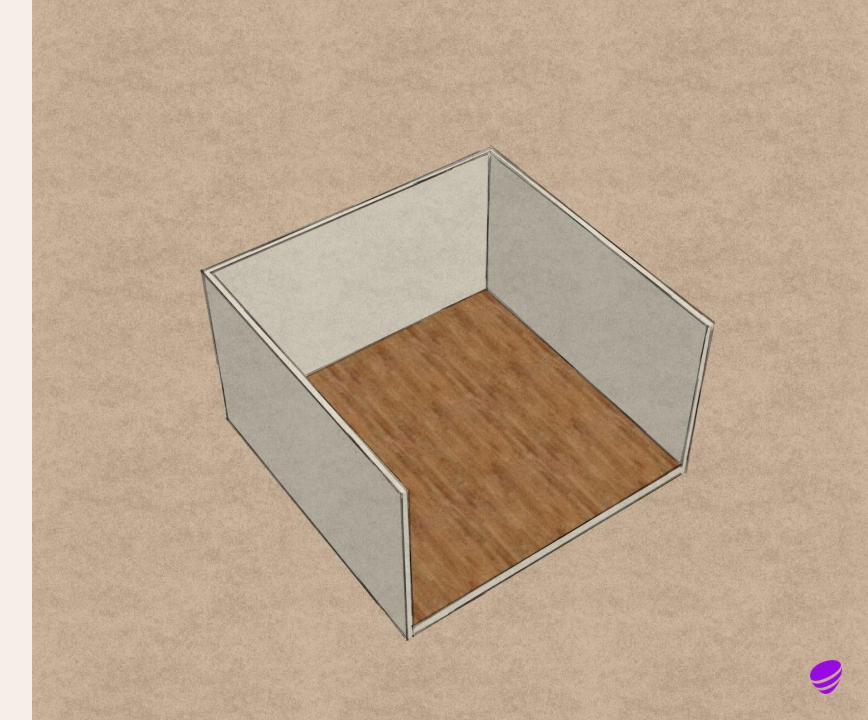
What color is your IP Address?

Allan Eising Network Automation Architect



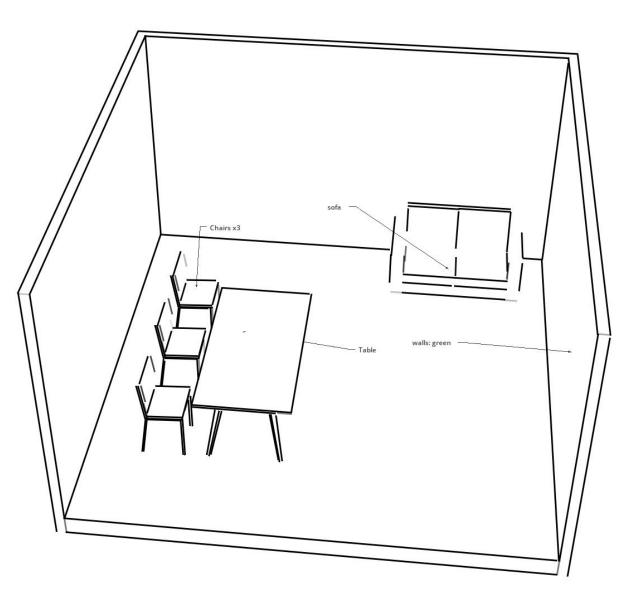
Disclaimer

Most challenges in this presentations are common to service providers. A few are very specific to Cisco NSO's approaches.


Everything should be useful generally.

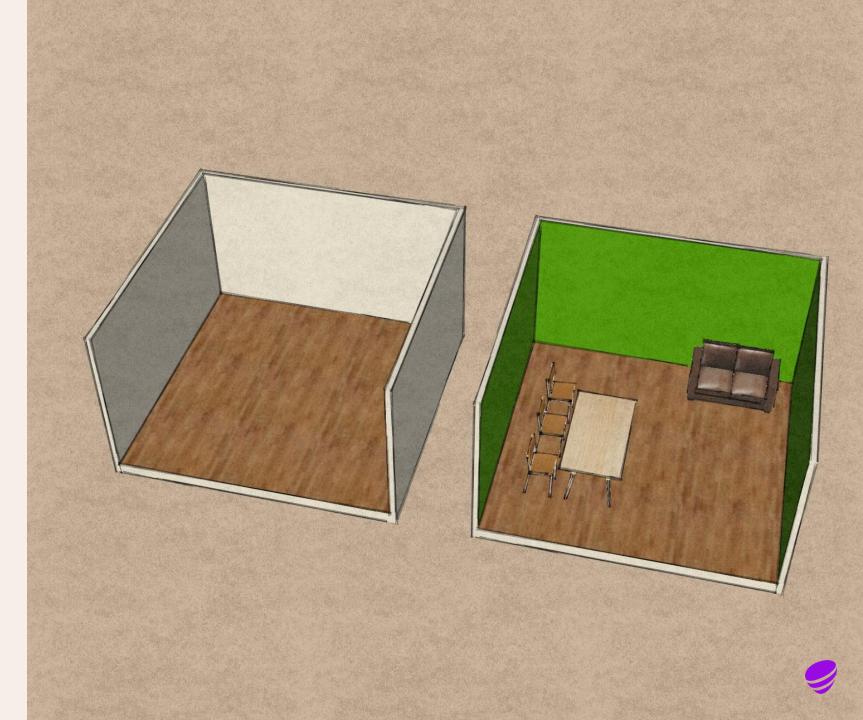
Service automation and interior design

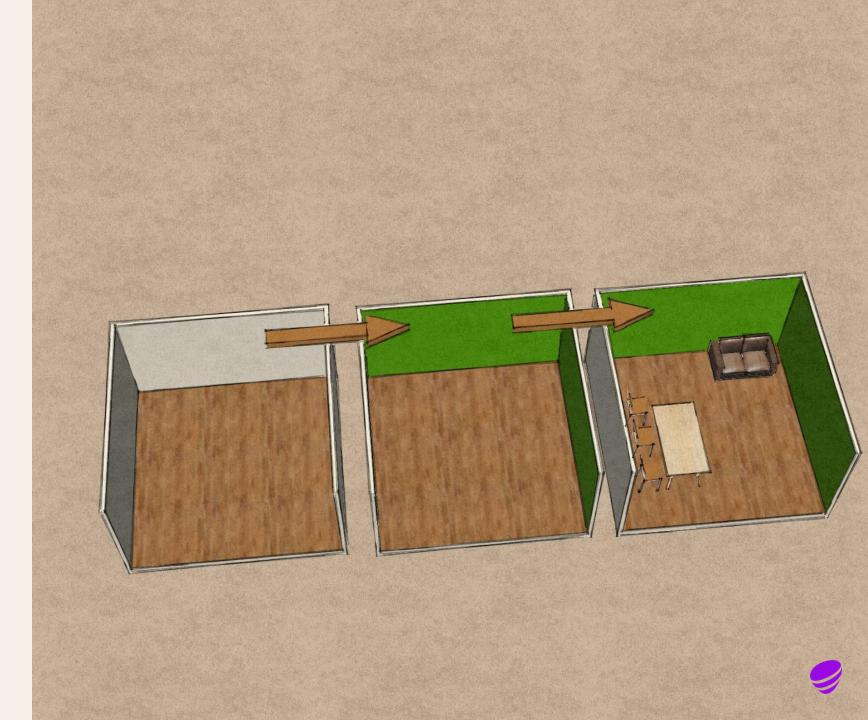
Greenfield


- In this scenario we start from a clean slate
- The walls in this room are unpainted, and no furniture exists

Service

We then describe our desired state:

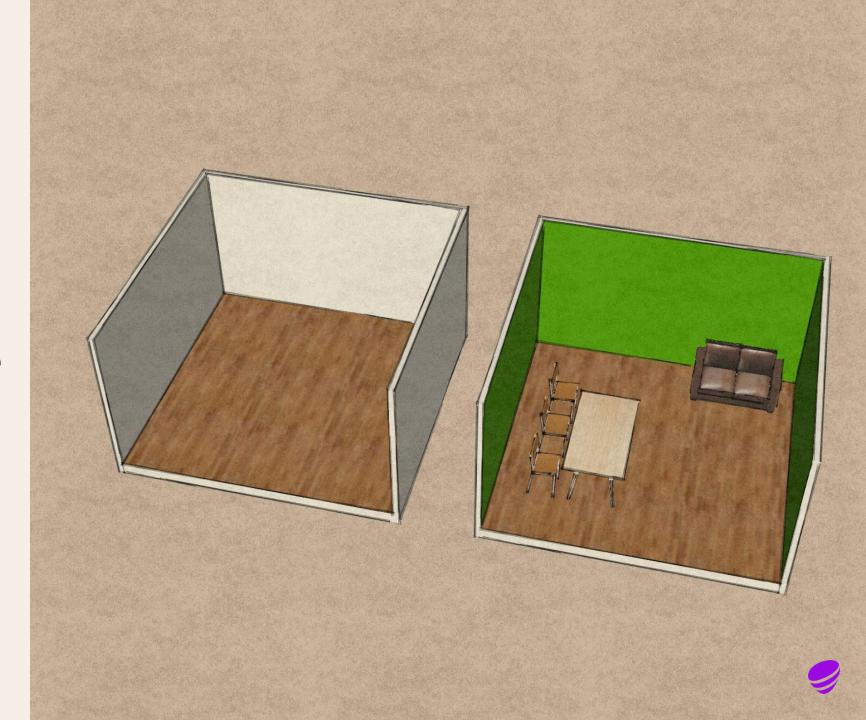

- Three chairs
- One table
- A sofa
- The walls should be green


What changed?

 When we're done we can look at the steps we took to get there

Furnishing

- The actions we took are important
- Here:
 - 1. Paint the walls green
 - 2. Add the furniture


Create, modify, delete

- If we remember how to go from the empty room to the desired state, we can do the opposite too:
 - 1. Remove the furniture
 - 2. Paint the walls back to their original color
- Now we know how to add and how to remove
- Modifying the room came for free

Network automation

The act of transforming the *current* state into the *desired* state

Confused? Let's try again...

Service

- Service automation should be declarative
- It describes how network state should look, e.g.,
 - Bandwidth
 - IP addressing

```
"service": {
  "endpoint": "214002eb-a48f-49f7-9bf2-18dddf2f7b45",
  "bandwidth": "100m",
  "ip-addresses": [
      "family": 6,
     "address": "2001:db8:f00::/56",
    },
      "family": 4,
      "address": "192.0.2.1/30"
```

"Furnishing"

- To get the **network** to the desired state, a number of steps will be taken
- We find the end-point and then:
 - 1. Add the ipv6 address
 - 2. Add the ipv4 address
 - 3. Add the QoS policy

interface GigabitEthernet0/0/1/0
ipv6 address 2001:db8:f00::/56

interface GigabitEthernet0/0/1/0
ipv4 address 192.0.2.1/30

interface GigabitEthernet0/0/1/0
 service-policy input CUSTOMER_100M
 service-policy output CUSTOMER_100M

Create, modify, delete

- If we record how to go from the interface as it was to the desired state, we can do the opposite too:
 - 1. Remove the addresses
 - 2. Remove the service policy
- If we modify the service, we just have to reverse your steps, and start over

interface GigabitEthernet0/0/1/0

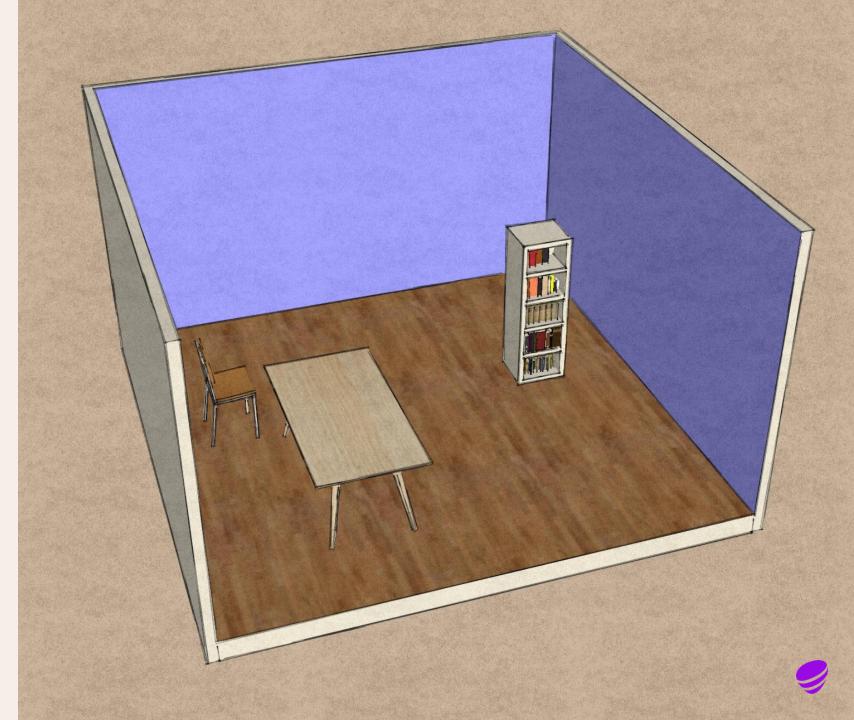
- ipv6 address 2001:db8:f00::/56
- ipv4 address 192.0.2.1/30
- service-policy input CUSTOMER 100M
- service-policy output CUSTOMER_100M

interface GigabitEthernet0/0/1/0

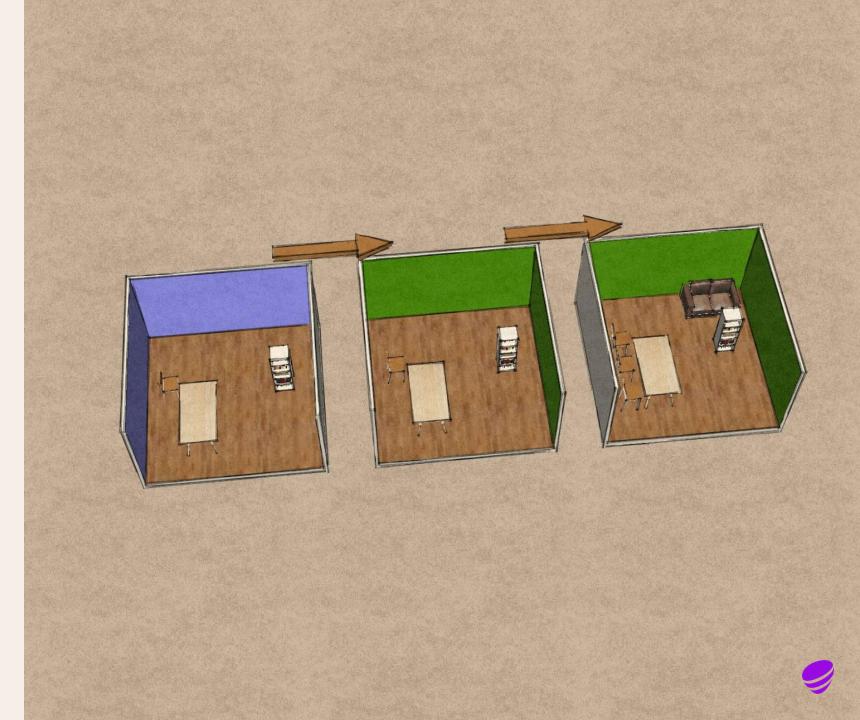
- no ipv6 address 2001:db8:f00::/56
- no ipv4 address 192.0.2.1/30
- no service-policy input CUSTOMER_100M
- no service-policy output CUSTOMER_100M

Network automation

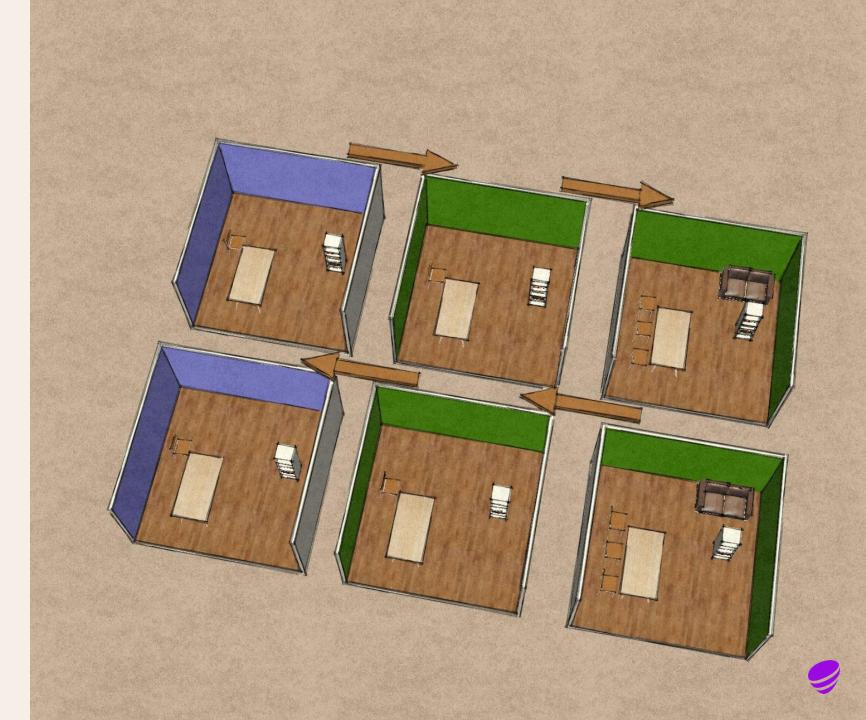
When removing a service the *desired* state should be the state *prior* to activating the service


It's never that simple...

Brown field scenarios


Brown field

- What if instead of an empty room, there is already something in it?
- The walls could have a different color
- Some furniture is already there
- Some of it may be expected, some not
 - like the bookcase


Reaching the intended state

- Our orchestrator should apply the desired state on top of the room as we found it
- The walls will be re-painted to green
- the missing two chairs will be added
- The sofa will be added
- But the bookcase will remain untouched

Removal

- When moving out, we should restore the room to its original state
- Including the old paint and the furniture that was already there
- Just like renting an appartment

How does that apply to network automation?



The brownfield network

- Most networks are full of customer services created in the past
- These could have been made by hand or with some other tools we don't use anymore
- Just like our rooms have furniture, our network devices has configuration already
- Just adding **no** in front of all our commands is no longer good enough
- Our documentation may help us

Reaching the intended state

- Our orchestrator should apply the **desired** state on top of the **current** state
- For example:
 - The IPv6 address will be changed to the right one
 - the missing IPv4 address will be added
 - But the mtu will remain untouched

interface GigabitEthernet0/0/1/0

mtu 9216

ipv6 address 2001:db8:ba0:1234::/64
service-policy input CUSTOMER_100M
service-policy output CUSTOMER_100M

interface GigabitEthernet0/0/1/0 mtu 9216 ipv6 address 2001:db8:f00::/56 ipv4 address 192.0.2.1/30 service-policy input CUSTOMER_100M service-policy output CUSTOMER_100M

Service Diff

- We still only record what changed in the network state
- What wasn't changed during creation, will not be touched during deletion

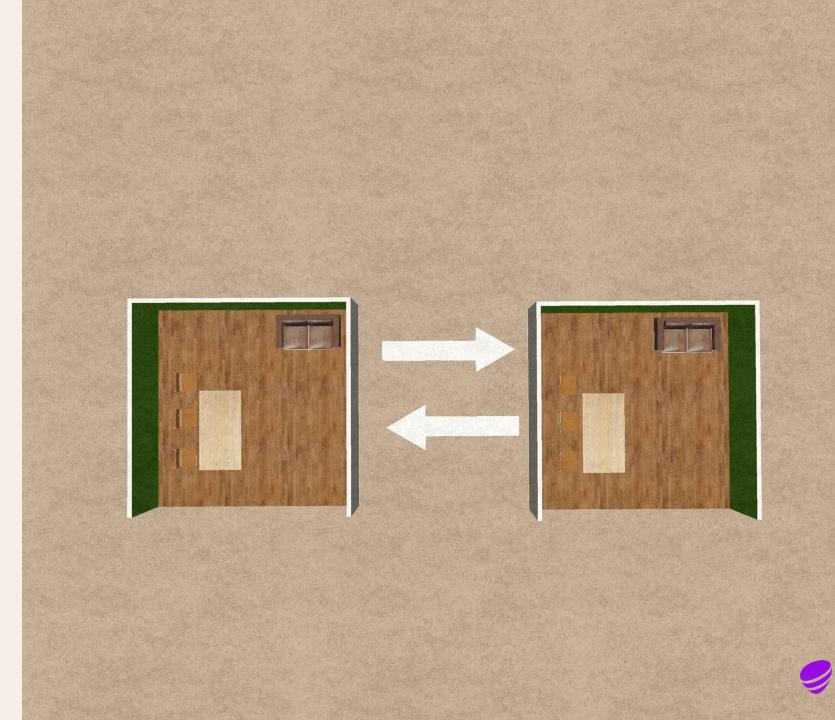
interface GigabitEthernet0/0/1/0

- ipv6 address 2001:db8:ba0:1234::/64
- ipv6 address 2001:db8:f00::/56
- ipv4 address 192.0.2.1/30

Unexpected and expected existing states

Expected/safe

- Default configuration on interfaces
- Automatic configuration done by the platform

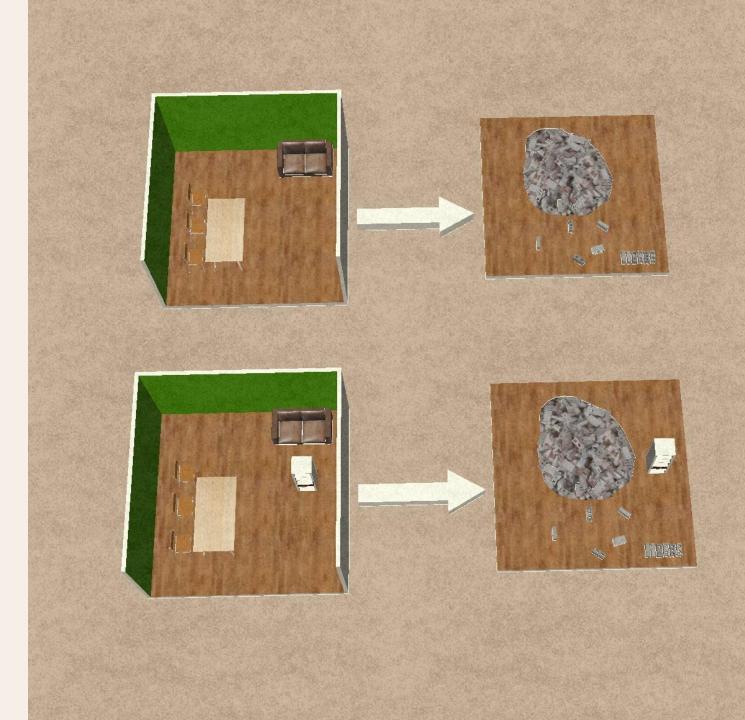

interface GigabitEthernet0/0/1/0
 description UNUSED_INTERFACE
 mac address-group PROTECT in
 no ip address
 shutdown

Unexpected/unsafe

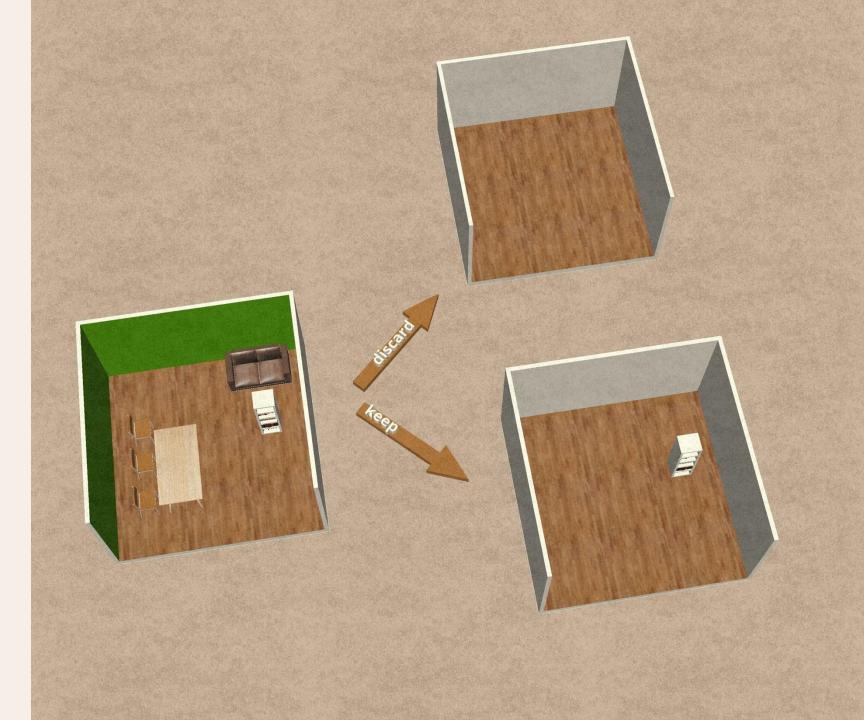
- Wrong interface recorded in documentation
- Old configuration not entirely removed
- Overwriting an undocumented service


What if it was right from the start?

- When the automation is run, it has nothing to do
- Once the service is deleted, there are no steps to reverse
- This means that the service is removed, but the result of the service is still in the network
- We thought we removed the service, but it is actually still there!


Ownership

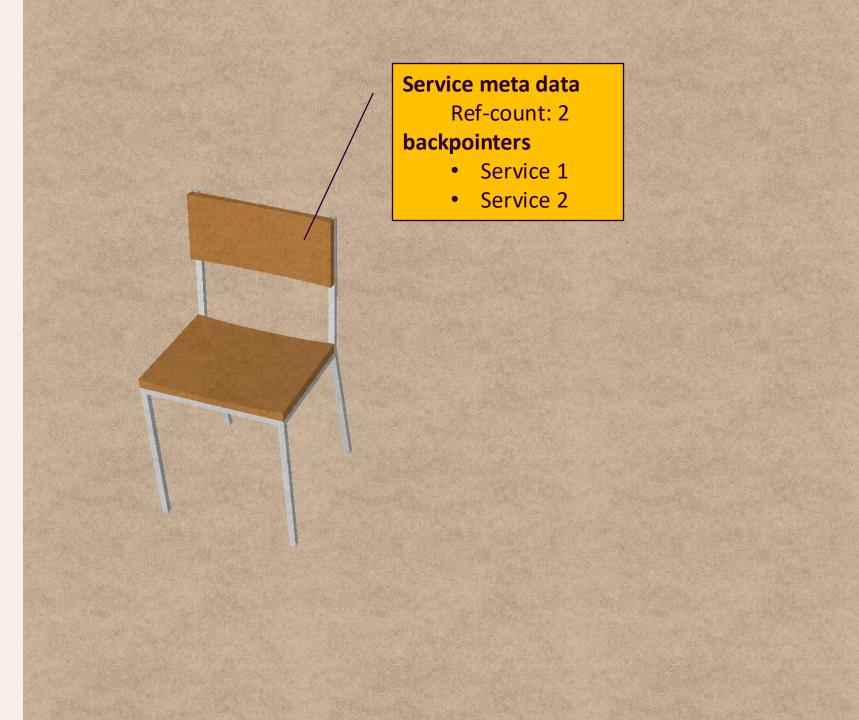
- If the sofa was there before, we need to take over the ownership
- If there's an unexpected item, we need to remove it


Ownership

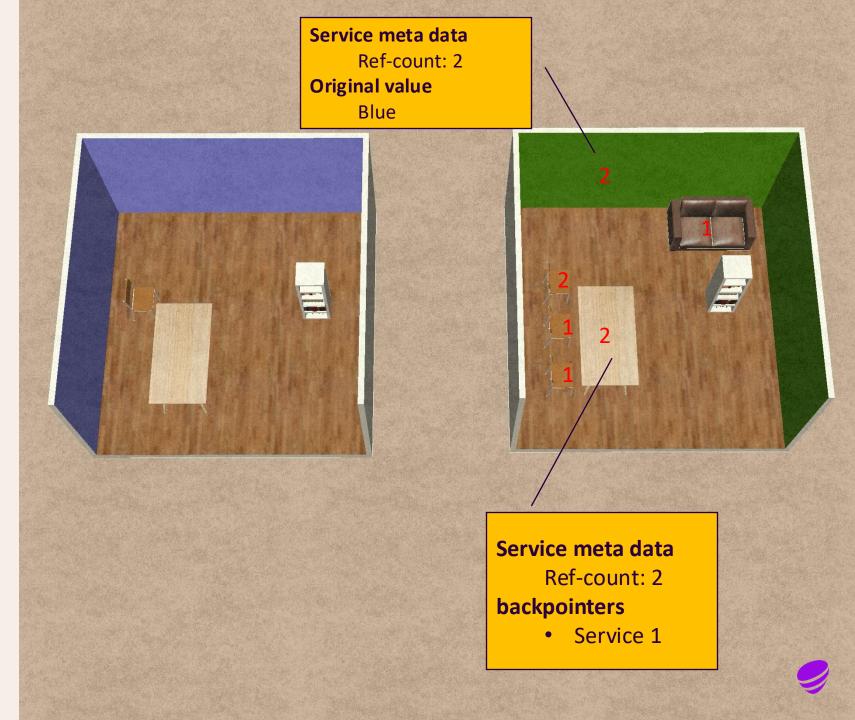
- You shouldn't take over too much
- We don't want to tear down the whole room if there are still things inside it

What about the bookcase?

- You need to choose what to do with the elements that are not part of your service
- Keep or remove?
- The bookcase is easy
- In reality it might be more complicated


Claiming ownership

- We also need to track who has a claim to each item
- Each item our service created from scratch is owned by 1
- If a service wants to add something that is already there, it adds 1 to the counter
- An item should be removed if nobody owns it anymore


Backpointers

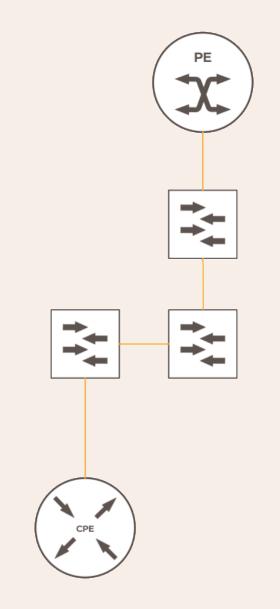
- Ownership should be public
- Each claim to an item should come with an identifier
- Each service leaves its address on each item
- This allows us to tie the refcount to the actual services

Brownfield

- If something already exists, it will get a ref-count but no backpointer
- The bookshelf is not part of the service, so it will have no refcount
- Original values of items changed should also be recorded
- In NSO: "re-deploy re-concile"

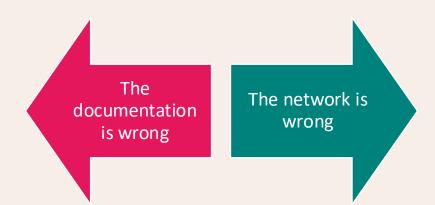
Reconciliation

Let's settle the differences


Who is right?

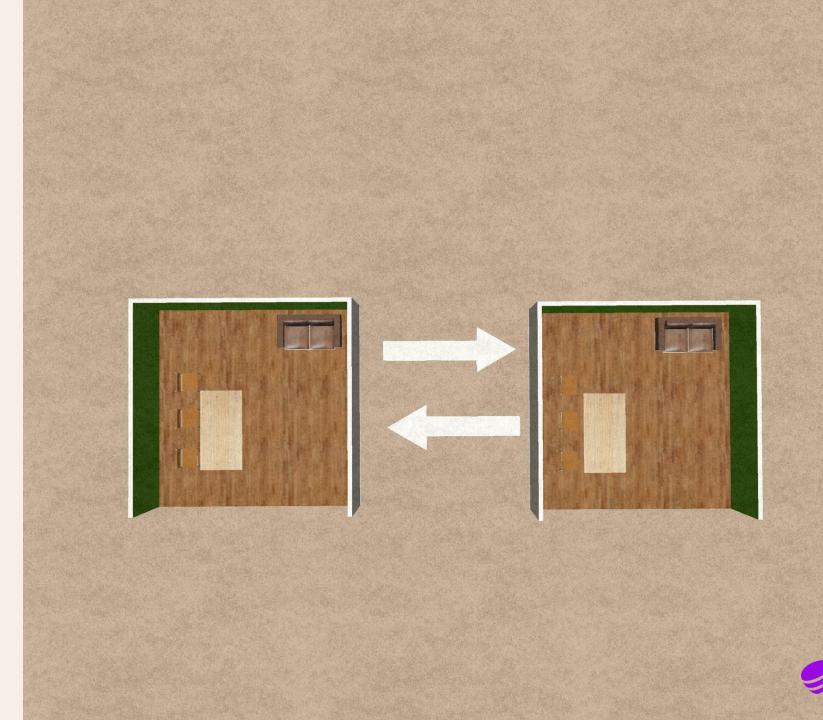
- Was the wall actually supposed to be blue?
- How many chairs did the customer actually want?
- Did the customer actually order a book case but we didn't support that in our standard product?
- This requires some insight in to the customer order

Who is right? (with proper examples)


- Was the wall vlan actually supposed to be blue 101?
- How many chairs megabit/s did the customer actually want?
- Did the customer actually order
 a book case OSPF but we didn't
 support that in NSO or our
 standard product?

Who is right? (with proper examples)

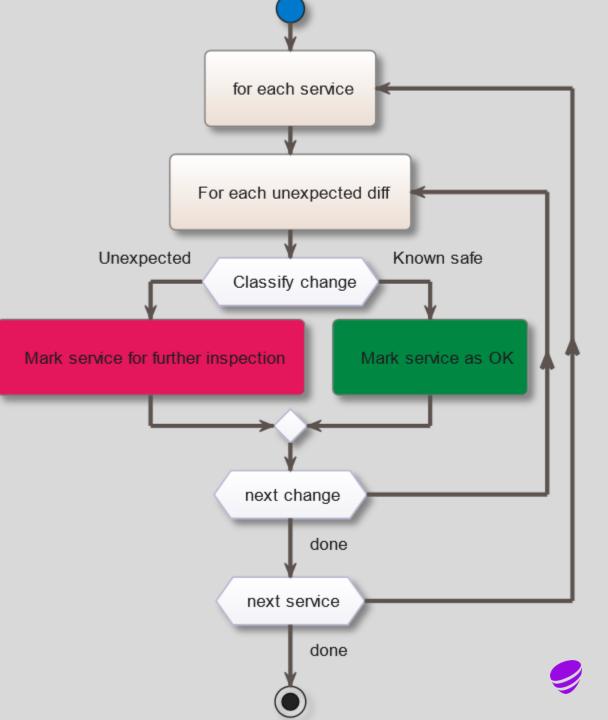
- Was the wall vlan actually supposed to be blue 101?
- How many chairs megabit/s did the customer actually want?
- Did the customer actually order
 a book case OSPF but we didn't
 support that in NSO or our
 standard product?


Challenge at scale

- Some of the original states might have been correct
- Some are obviously incorrect
- But it may be hard to tell without knowing
- There may be thousands of services to analyze


Service analysis

- We expect all existing services to be correct
- We expect the current state to match the desired state


Service analysis

- If this is true, nothing will be done
- If it is not, the actions tell us about a deviation

How do we solve it?

- We can do this at scale
- We can use "commit dry-run" or work with virtual routers
- Any deviation should be analyzed and categorized
- Some changes might be safe and unimportant
- Other changes might indicate something larger

Making it user friendly

- Our first version was a python script that wrote text files
- Now we are building a tool to make it easy
- Here we can process large batches of services on top of a production copy
- The services with differences can be processed

🥜 Telia				8632-S04 7 09:02:22							
admin - Reconciliation	Search										
Core	Subscription	Туре	Version	Batches	Status	Result		Created	Updated	User	
ces	TIC-200-82655	Internet	1	CMFT-1-8632-S04	Se		: ⊒ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
arms	TIC-199-86269	Internet	1	CMFT-1-8632-S04	Şiq		_ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-198-83660	Internet	1	CMFT-1-8632-S04	දේම		_ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		17
	TIC-197-88816	Internet	1	CMFT-1-8632-S04	වේ		= 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-196-83179	Internet	1	CMFT-1-8632-S04	56		≡ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-195-89387	Internet	1	CMFT-1-8632-S04	5°9		_ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-194-81930	Internet	1	CMFT-1-8632-S04	5'6		2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-193-81028	Internet	1	CMFT-1-8632-S04	Sig		_ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-192-89523	Internet	1	CMFT-1-8632-S04			: = 2	2025-02-17 09:02:22	2025-02-17 09:31:27		
	TIC-191-81206	Internet	1	CMFT-1-8632-S04	Δ		: ≡ ³	2025-02-17 09:02:22	2025-02-17 10:26:09		
	TIC-190-86850	Internet	1	CMFT-1-8632-S04	Sig		: ≡ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-189-82147	Internet	1	CMFT-1-8632-S04	විම		2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-188-81655	Internet	1	CMFT-1-8632-S04	දේම		_ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-187-80035	Internet	1	CMFT-1-8632-S04	ත්ම		2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-186-89249	Internet	1	CMFT-1-8632-S04	වේම		= 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-185-85866	Internet	1	CMFT-1-8632-S04	Şiğ		≡ 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
Tools_ ask list Monday	TIC-184-85653	Internet	1	CMFT-1-8632-S04	Δ		: = 2	2025-02-17 09:02:22	2025-02-17 09:31:27		
	TIC-183-83883	Internet	1	CMFT-1-8632-S04	56		= 2	2025-02-17 09:02:22	2025-02-17 09:31:28		
	TIC-182-86061	Internet	1	CMFT-1-8632-S04	ē ^j ā		= 2	2025-02-17 09:02:22	2025-02-17 09:31:28		-

Processing a service

- The operators can drill down on individual services
- They can adjust the service parameters to match
- Or approve or reject the service as it is

	RECONCILIATIO	N_~ » TIC-1-86256 ~			¥ ^					
🥪 Telia		TIC-1-86256 Type Internet	Created 2025-02-17 10:32:33 User - Status 🗸 D	C) Done						
	Batches	CMFT-1-3887-S09 Version 1	Changed 2025-02-17 10:33:24 Result 🋕 A	Auto Fail						
admin 👻	Parameters		Discrepancies							
Reconciliation B2B	Circuit ID	circuit-182788-1			fig					
Core	Company Alias	BrokeButHappy Ltd.	Status Path	Network Value NSO Value	Config					
System	CPE Hostname	cpe-1	Discrepancy list not yet implemented							
Devices Alarms	CPE LAN IF ID									
	CPE LAN IF Type				č					
	CPE Model	C1100			ts					
	CPE Vendor	CISCO			Shortcuts					
	CPE WAN If ID	0/0/0								
	CPE WAN If Type	GigabitEthernet	Services							
	Cust Prefixes	44.0.1.0 255.255.255.0 44.0.1.1	Access	Prolane 👪	88					
	C Tag	1202	Device Diffs	Device Diffs						
	Download BW Rate	3								
	Download BW Unit Gigabit		nso	cpe-1 nso						
	FN Access Nodes	rer1::GigabitEthernet0/1/0	services { common {	device cpe-1 { config {						
	Ports		access { access-service circuit-182788-1 {	interface { GigabitEthernet 0/0/0.1202 {						
	Link Prefix	1.2.6.114/31	state { admin-state design and assign;	- description "From SEB1,FA,circuit-182788-1,TIC-142760-1,"; + description "From SEB1;FA;circuit-182788-1;TIC-142760-1;";						
	PW Ether If	22	<pre>+ admin-state activate_network; } </pre>	ip { address { primary {						
	SEB Primary	seb1	}	- address 1.2.6.161; + address 1.2.6.115;						
	SEB Secondary	seb2	}	}						
	Subscription ID	TIC-142760-1	Device Native Config	}						
	S Tag	1403		}						
	Upload BW Rate	3	rer1 seb1 seb2	}						
	Upload BW Unit	Gigabit	interface GigabitEthernet 0/1/0 apply-group INTERFACE_CPE_DEFAULT	Device Native Config						
	VAS Data Elements	These are procedurally generated subscription parameters	description To BrokeButHappy Ltd.;FA;circuit-182788-1;circuit-182788-1; mtu 9192	seb1 seb2 cpe-1						
	VC Identifier	168	negotiation auto no shutdown load-interval 30	interface PW-Ether 22						
	Save and Run pipeline		carier.delay up 3000 down 0	bandwidth 3000000 exit						
	E		exit interface GigabitEthernet 0/1/0.0 l2transport	interface PW-Ether 22.1202 apply-group BBP V4 INTERFACE DEF						
	Events	F	description To BrokeButHappy Ltd.;FA;circuit-182788-1;circuit-182788-1; mtu 9100	description To BrokeButHappy Ltd.;FA;circuit-182788-1;cpe-1; bandwidth 3000000						
Tools	•	ancy Report Done 2025-02-17 10:33:24	encapsulation default no shutdown	encapsulation dotlq 1202 service-policy output QOS_CUST_SHAPE_BBP_OUT_3G account user-defined -4						
Task list	Result	🌲 Auto Fail	exit l2vpn	ipv4 address 1.2.6.114/31 no shutdown						
Monday	Discrepancy Report Start 2025-02-17 10:33:10		xconnect group L3_BPW p2p 168 interface CirchitEthermot0/1/0 0	logging events link-status exit exite statis						
10:36 AM	Import 2025-02-17 10:32:33		interface GigabitEthernet0/1/0.0 neighbor ipv4 127.0.0.1 pw-id 168 pw-class L3 BPW	router static address-family ipv4 unicast 44.0.1.0/24 PW-Ether22.1202 1.2.6.115 description TIC-142760-1						
			pw-class L3_brw backun neinbhor 127.0.0.1 mw-id 168	44.0.1.0/24 FW-Ethel22.1202 1.2.0.115 description fit-142/00-1 exit	*					

Summary

The key challenges to brown field automation concerns

- Reconciliation of differences
- Ownership of configuration
- If your services own too little, they won't clean up after themselves
- If your services own too much, they can cause major outages

Summary

- You should analyze if existing services match what is currently in the network
- This can be done with dry-run simulations
- Deviations should be analyzed carefully
- Use your network delivery engineers. They are experts in this field.

Thank you!

Questions?

