
AI Workload
Networking challenges

Peter Lundqvist
Arista Networks

peter@arista.com

“AI”, i do sense audience fatigue on the topic…
• “Another vendor that rebrand its if-then-else code and

call it Deep Learning when it’s same old shit”

• “ More Datacenter Fabric crap, i work with THE Internet”

• “ Deepseek… that shit that killed my pension plan “

• “In the end it will be self-aware and we are all doomed…”

However…
• The train have left the station long time ago… and you all are onboard like it or not !

• You all have learn how to battle the Internet TCP based networks and its
mechanisms CWND, SACK, DupACK, Retransmission etc…

• AI Workloads your next battleground

• ChatGPT the new Googling

• Discover new things… be a Viking !

AI workloads main characteristics
Requires specialized Hardware
• Many names… xPU (GPU, ICU, TPU…)

Collective communication/libraries
• The single vs multi-node communication and its data transfer models *CCL (ex NCCL)

• Process buzzwords
• LLM, Forwarding vs Backward pass, Weight, Calculate loss, Barrier, Gradient Descent…

AllGather & AllReduce

4

Gradient Descent

That thing with CPU vs GPU

GPU Clusters

x00k GPUs

Multi-GPU Network

5

GPU

100-10k+ Cores

Optimized for parallel task

CPU

1-10+ Cores

Optimized for serial task

Single vs Multi-GPU… makes all the difference

Database :
GBs input

data

gradients

parameters

SINGLE-GPU

Local gradients

parameters

Local gradients

parameters

Local gradients

parameters

Local gradients

parameters

Database :
GBs input

data

Summarize gradients across GPUs (network “API” – “Allreduce”)

Global gradients

MULTI-GPU

• Data parallelism allows feeding different GPUs with different parts of the “data”
and process the data in parallel

• After each GPU processed its data, it shares the result with all the other GPUs

“Computing the gradient for individual data points and then
averaging them, is the same as computing the gradient using the
whole dataset at once”

Global gradients Global gradients Global gradients

AI Collective Communication
Responsible for the networking in AI fabrics?

These “patterns” needs to be understood
since this steers the behavior(s) of these
workloads

• Broadcast
• Allgather
• Allreduce
• Reduce
• Reduce-scatter
• Barrier
• …

https://www.ietf.org/archive/id/draft-yao-tsvwg-cco-problem-statement-and-usecases-00.html 7

https://www.ietf.org/archive/id/draft-yao-tsvwg-cco-problem-statement-and-usecases-00.html

High level example AI training loop

Step 1: Data propagation
• Distribute the data among GPU

Step 2: Forward and Backward pass
• Perform forward pass and calculate the

prediction
• Calculate loss by comparing prediction

with actual output
• Perform backward pass: compute the

local gradients of the loss function

Step 3: Gradient aggregation
• Call Allreduce to reduce the local

gradients
• Update parameters using global

gradients

The key metric: Job Completion Time (JCT)

Dataset

Params

G
PU

0 Params

G
PU

1 Params

G
PU

2 Params

G
PU

3

L1

L2

…

Ln

Local
Gradients

F B

L1

L2

…

Ln

Local
Gradients

F B

L1

L2

…

Ln

Local
Gradients

F B

L1

L2

…

Ln

Local
Gradients

F B

MPI_Allreduce

Global
Gradients

Global
Gradients

Global
Gradients

Global
Gradients

UPDATE Parameters

Loop{}

8

1

2

3

Data Center Fabric Design Principles

L3 Leaf-Spine Fabrics

9

L3 equal cost multipath (ECMP)

Node maintain its own RIB&adjency state
PATH change deterministic to each RIB

The Routing protocol = BGP

Relax, this session NOT a “DC fabrics for dummies” session

• However… AI workloads currently resides in DC fabrics and that have build the experience

• Come on… It’s L3, ECMP and BGP… what’s not to like J

How to connect these GPU systems ?

XPU1 XPU2 XPU3 XPU4

CPU0

High Speed Inter-XPU “switch”

XPU5 XPU6 XPU7 XPU8

CPU1

x NICs
for CPU/Storage

x AI NICs
for interconnecting

GPU systems

2x 100GbE
or

2x 400GbE

8x 400GbE
or

4x800G

Datacenter
Fabric

(Compute and storage)

AI
Center

(interconnecting XPU)

Front-End

Back-End

10

AI Fabric scale
Challanges

Single-tiered AI Fabric

GPU system

8x 400GbE

GPU system

8x 400GbE

GPU system

8x 400GbE

GPU system

8x 400GbE

…

…

…
Multi-tiered AI Fabric

GPU system GPU system GPU system GPU system

Small and Moderate AI Fabrics (GPUs)

Large AI Fabrics (GPUs)

• Single-tiered or “Spline”
less networking challenges,
careless multi-GPU

• However when grow from
single to 2 or 3-tier…

• Then it’s not that easy with
AI Workflows

GPU system

8x 400GbE

GPU system

8x 400GbE 8x 400GbE 8x 400GbE

……
8x 400GbE 8x 400GbE

…

L3 Leaf-Spine Front-end & Back-end

Compute
Leaf

1x link per GPU

CPU STORAGE

XPU XPU XPU XPU
XPU XPU XPU XPU

CPU STORAGE

XPU XPU XPU XPU
XPU XPU XPU XPU

CPU STORAGE

XPU XPU XPU XPU
XPU XPU XPU XPU

CPU STORAGE

XPU XPU XPU XPU
XPU XPU XPU XPU

1:1 No Oversubscription

12

GPU
Systems

Front-end

Back-end

*8

3:1 Oversubscription

*8*8*8

IP Fabric

0 1 2 3 4 5 6 7

Alternative topologies

• A Planar (Rail) is comprised of GPUs
that have the same “rank” and
connected to the same network

• Collective communications (ex NCCL
library) places flows on each Planar
(here 1-7) based on example utilization

• Less networking devices, drawback
lots of fibers and complex patching

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

CPU STORAGE

XPU-0 XPU-1 XPU-2 XPU-3

XPU-4 XPU-5 XPU-6 XPU-7

0 1 2 3 4 5 6 7

L3 Leaf-Spine

PLANAR Only

13

1 2 43 65

1 2 43 65

AI-leaf

GPU-to-GPU Traffic over Ethernet Fabrics

GPU

GPU

GPU

Send Recv Send Recv

QP QP

RDMA

RDMA uses Queue Pairs (QPs) that are mapped to user-
space memory regions. The NIC reads/writes directly
to/from these regions.

14

RDMA = Remote Direct Memory Access

RDMA over Converged Ethernet (RoCEv2)

GPU

GPU

GPU

Send Recv Send Recv

QP QP

UDP
Header IB PayloadIP

Header
Eth L2
Header

IB BTH
(L4 Header) FCS

Et
he

rty
pe

Pr
ot

oc
ol

#

DP
or

t#

4791

20B 8B 12B

Ethertype
0x0800

254

RDMA over Converged Ethernet (RoCEv2)

iCRC

15

High probability of flow collisions
• Low entropy in GPU-to-GPU traffic pattern makes ECMP difficult
• Size and duration of the flows
• The amount of traffic compare to the buffering capability over each ECMP member

Now… Challenges with AI Flows

A1 B1

A2 B2Flow
collision

16

Traffic direction

No QOS scheduling or queue priority will help since what to drop if *.* important ?
1. Traffic needs to slow down without been dropped => Pause frames&ECN bits
2. Traffic needs to be load balance beyond 5-Tuple hashing => RDMA header

NO… its NOT a QOS game
• Its not prioritize something at the cost of drop something else…
• Again what to drop if everything is Important ?
• Goal: Prevent loss&jitter by avoid burst and incast

arista(config)#sh queue-monitor length
Report generated at 2025-02-24 19:23:30
S-Start, U-Update, E-End, TC-Traffic Class
Segment size for S, U and E congestion records is 208 bytes
* Max queue length during period of congestion + Period of congestion exceeded counter
--
Type Time Absolute Interface Congestion Queue Time of Max Fabric
 Time (TC) duration length Queue length Peer
 (usecs) (segments) relative to
 congestion
 start
 (usecs)

--
 E 0:00:00.69912 ago 2025-02-24 19:42:34.66111 Et1(1) 74382 1076* 9797
U 0:00:00.71738 ago 2025-02-24 19:42:34.64285 Et1(1) N/A 1066 N/A
U 0:00:00.72303 ago 2025-02-24 19:42:34.63720 Et1(1) N/A 1069 N/A
U 0:00:00.72867 ago 2025-02-24 19:42:34.63156 Et1(1) N/A 941 N/A
U 0:00:00.73428 ago 2025-02-24 19:42:34.62595 Et1(1) N/A 1055 N/A
U 0:00:00.73989 ago 2025-02-24 19:42:34.62034 Et1(1) N/A 1071 N/A
U 0:00:00.74551 ago 2025-02-24 19:42:34.61472 Et1(1) N/A 1071 N/A
U 0:00:00.75114 ago 2025-02-24 19:42:34.60909 Et1(1) N/A 1057 N/A
U 0:00:00.75665 ago 2025-02-24 19:42:34.60358 Et1(1) N/A 1065 N/A
U 0:00:00.76228 ago 2025-02-24 19:42:34.59795 Et1(1) N/A 1055 N/A
U 0:00:00.76793 ago 2025-02-24 19:42:34.59230 Et1(1) N/A 1062 N/A
S 0:00:00.77350 ago 2025-02-24 19:42:34.58673 Et1(1) N/A 659 N/A
(…)

Report generated at 2025-02-24 20:33:00
Time Interface(TC) Tx-Latency (usecs)

0:00:00.29770 ago Et1(1) 1367.560
0:00:00.29962 ago Et1(1) 545.592
0:00:00.30472 ago Et1(1) 1015.288
0:00:00.30977 ago Et1(1) 879.248
0:00:00.36439 ago Et1(1) 1529.376
0:00:00.36669 ago Et1(1) 579.960
0:00:00.37180 ago Et1(1) 1049.656
0:00:00.37690 ago Et1(1) 1489.280
0:00:00.38194 ago Et1(1) 1496.440
(…)

Priority Flow Control (PFC)
• When threshold exceeded, a pause frame send to halt

data transmission for a specified period of time
• When the congestion mitigated and rate below the

threshold, a pause frame send with time 0 in order to
restart data transmission for that specific link

Traffic direction

CP
Sender Receiver

interface Ethernet15
 dcbx mode ieee
 flowcontrol send on
 flowcontrol receive on
 qos trust cos|dscp
 priority-flow-control on
 priority-flow-control priority 1 no-drop

(…)

Pause

Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
 Encapsulation type: Ethernet (1)
 Arrival Time: Feb 20, 2025 22:37:23.527297000 CET
 UTC Arrival Time: Feb 20, 2025 21:37:23.527297000 UTC
 Epoch Arrival Time: 1740087443.527297000
Ethernet II, Src: 00:1c:73:f7:2f:2a, Dst: 01:80:c2:00:00:01
 Type: MAC Control (0x8808)
MAC Control
 Opcode: Class Based Flow Control [CBFC] Pause (0x0101)
 CBFC Class Enable Vector: 0x0003, C0, C1
 CBFC Class Pause Times
 C0: 65535
 C1: 65535
(…)

Frame 2: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
 Encapsulation type: Ethernet (1)
 Arrival Time: Feb 20, 2025 22:37:23.527520000 CET
 UTC Arrival Time: Feb 20, 2025 21:37:23.527520000 UTC
 Epoch Arrival Time: 1740087443.527520000
Ethernet II, Src: 00:1c:73:f7:2f:2a, Dst: 01:80:c2:00:00:01
 Type: MAC Control (0x8808)
MAC Control
 Opcode: Class Based Flow Control [CBFC] Pause (0x0101)
 CBFC Class Enable Vector: 0x0003, C0, C1
 CBFC Class Pause Times
 C0: 0
 C1: 0
(…)

Traffic direction

Sender Receiver

End Pause

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

1 Version IHL DSCP/ECN Total Length

2 Identification Flags Fragment Offset

3 TTL Protocol Header Checksum

4 Source Address

5 Destination Address

6 Options Paddings

0 1 2 3 4 5 6 7

CS AF/EF ECN
00 : Non-ECT
01 : ECT(1)
10 : ECT(0)
11 : CE

CS = Class Selector [CS0 to CS7]
AF = Assured Forwarding
EF = Expedited Forwarding
ECN = Explicit Congestion Notification

The “lost” bits of the DSCP header = ECN

19
(…)
Internet Protocol Version 4, Src: 192.168.0.220, Dst: 192.168.0.235
 0100 = Version: 4
 0101 = Header Length: 20 bytes (5)
 Differentiated Services Field: 0x03 (DSCP: CS0, ECN: CE)
 0000 00.. = Differentiated Services Codepoint: Default (0)
 11 = Explicit Congestion Notification: Congestion Experienced (3)

(…)

ECN with TCP (DCTCP)
• If traffic rate exceed threshold => switch set Congestion experienced (CE set)
• The receiver set the ECE flag in the TCP header in the acknowledge packet
• Servers needs to support ECN (net.ipv*.tcp_ecn=1)

Traffic direction

ECE Set

CE setECT set
CP

Sender Receiver

Internet Protocol Version 4, Src: 192.168.0.235, Dst: 192.168.0.220
(…)
 Differentiated Services Field: 0x03 (DSCP: CS0, ECN: CE)
 0000 00.. = Differentiated Services Codepoint: Default (0)
 11 = Explicit Congestion Notification: Congestion Experienced (3)
(…)
Transmission Control Protocol, Src Port: 48802, Dst Port: 5555, Seq: 357657, Ack: 1, Len: 1448
(…)

Internet Protocol Version 4, Src: 192.168.0.220, Dst: 192.168.0.235
(…)
 Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
(…)
 Transmission Control Protocol, Src Port: 5555, Dst Port: 48802, Seq: 1, Ack: 359105, Len: 0
 Flags: 0x050 (ACK, ECE)
 000. = Reserved: Not set
 ...0 = Accurate ECN: Not set
 0... = Congestion Window Reduced: Not set
 1.. = ECN-Echo: Set
 0. = Urgent: Not set
 1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
(…)

The Addition of Explicit Congestion Notification (ECN) to IP
https://datatracker.ietf.org/doc/rfc3168/

Traffic direction

RDMA = UDP, CNP acting for TCP ECE

GPU GPU

qos profile rocev2-wred
 tx-queue 1
 no priority
 random-detect ecn minimum-threshold 256 kbytes maximum-threshold 512 kbytes max-mark-probability 100 weight 0

RoCEv2 CNP

CE setECT set

TX Queue 1

• Congestion Experienced
(CE) Detected set by the
Congestion Point (CP)

• Inform the Sender via
RoCEv2 Congestion
Notification Packet (CNP)

CP

0 1 2 3 4 5 6 7

CS AF ECN

RDMA Aware Load Balancing

Hash based on destination Queue Pair field
• Jobs run typically with 4… 64 queue-pairs (QP)

• Number of flows is roughly twice the number of QPs => 4*QPs at 400G translates to 8x50G flows

• The Dst QP starts at offset 0x5B (40bit) and has length of 0x3B (24bit)

load-balance policies
 load-balance sand profile default
 fields udp dst-port 4791 payload bytes 5-7
(…)

UDP
Header IB PayloadIP

Header
Eth L2
Header

IB BTH
(L4 Header) FCS

Et
he

rty
pe

Pr
ot

oc
ol

#

DP
or

t#

4791

20B 8B 12B

Ethertype
0x0800

254

iCRC

Opcode SE M PC ver Prt ver rsvd Dst QP A

24

rsvd Seq

8 1 1 2 4 16 8 1 7 24

Cluster Load balancing, learn the flow(s)

DLB ENGINE

CLB Optimization

RDMA Flow
detection

• Initial traffic forwarding via default load-balance
sceme (1)

• Learn new RDMA flows in the network (2)

A1

B1

C1

1

2

3 4

RDMA writes (opcode 10)

Cluster Load balancing…

• Identify flows that are part of the same collective (3)
• Allocate these flows to evenly links (4)

A1

B1

C1

DLB ENGINE

CLB Optimization

RDMA Flow
detection 3 4

switch(conf)#load-balance cluster
switch(conf-clb)#forwarding type bridged encapsulation vxlan ipv4
switch(conf-clb)#load-balance method flow round-robin
switch(conf-clb)#flow source learning
switch(conf-clb-flow-learning)#aging timeout 60 seconds
switch(conf-clb)#port group host server1
switch(conf-clb-portgroup-server1)# interface Et15/1, Et16/1…
switch(conf-clb-portgroup-server1)#flow limit 800

However… its expensive

25

• Multi-GPU Fabric(s) expensive…
• Market looking for alternative models running over less expensive hardware
• Alt ways of deploy the workloads

AI capacity from AI Provider

26

AIaaS
• Running AI in the Cloud, Chatbots ?

"Without Data, AI Means Nothing”
• How to secure transport “Data” over WAN, IPSEC, TunnelSEC ?

Segment customers from each other
• Segmentation ? EVPN, that is segment storage with VMs, GPUs with VLAN/VRF…

Storage Storage VRF VRF VRF VRF

Running AI Workloads outside or between DC ?

27

Is it even doable (with current) Collective Communication behavior ?

• Which none DC Back-end network can handle 400Gbps flow(s) GPU<>GPU ?
• DC have much more BW than Cores (No shit)… thereby todays Multi-GPU solution adapted to

high-throughput, low-latency and packets arrive in the right order

• MPLS/VXLAN encapsulation and throttling feedback ?
• ECN/Pause frames pointless since encapsulated end-to-end, temporary networking challenges

needs to be address with other means than lossless features like PFC/ECN

• SRv6 and micro-SID that seems to fix everything from hangover to networking ?
• Can’t see any golden nugget compare to example MPLS headers, however more fields to play

with example the flow label field…

RFC 1925 The Twelve Networking Truths
(…)
(5) It is always possible to aglutenate multiple separate problems into a
single complex interdependent solution. In most cases this is a bad idea.
(…)

20th Cores dumb ?

28

Not really, example both QOS and delay can be handle pretty good with todays features
• Example MPLS-SR Flexalgo&TWAMP can steer the path based on the current delay/load on each

on the transit link(s) end-to-end by update TE Database using IS-IS TLV

However… the problem are physics and “spoiled childs behavior”

5ms
5ms

3ms

5ms 10ms

Change communication model(s)

29

Alternative Collective Communication models over WAN

• Lower the speed(s) ?
• Works, but “takes the air out” of Multi-GPU design

• More Banner allow more time for synchronization (and write)
• Probably the same result as above, much tuning needed

• Move to other protocols example NWMe, iWARP or move to QUIC ?
• TCP slow&complex state machine… even with SACK and Fast-recovery
• QUIC have easier flow control and could support ECN similar to RoCEv2 CNP

• Single GPU communication design
• Only distribute “data” from Storage to each remote GPU and result write(s) back over WAN ?
• In theory work as it would be in a DC, however this is a goodbye kiss to the parallelism

The future is yesterday

30

• Neural networking is not something new,,, neither linear algebra

• Things just happens... Example the breakthrough introduction of the backpropagation and
gradient descent algorithm (1986). Suddenly a company most famous for it’s graphical cards
in PCs, introduced the usage of GPU for none-graphical applications (2006).

• New open-source models like Deepseek, With less needs of expensive hardware or even
other ways of Collective Communication ? Of course... I mean we are far from Metcalfe’s
half-duplex ethernet with todays 800Gbps ethernet

• However… parallelism here to stay, and *any* model totally useless without good “data” to
be trained on/with. Where there is available capacity regards to compute&storage…
workloads and movement of “data” will most likely follow

