
POOR DOCUMENTATION
USING NETWORK AUTOMATION TO REPLACE



TEXT

A TALK ABOUT…

▸ Autogenerating network documentation 

▸ Best practices (that I didn’t necessarily follow)



Who am I?



‣ Allan Eising 

‣ Network (automation) engineer 

‣ Telia Norway 

‣ AS12929, AS198309, AS25400 

‣ blog.automate.network 

‣ @allaneising (twitter) 

‣ github.com/Eising

https://blog.automate.network
http://github.com/Eising


DISCLAIMER
ALTHOUGH I TALK ABOUT BAD DOCUMENTATION, 
IT IS NOT MY INTENTION TO SHAME ANY INDIVIDUAL WHO MAY HAVE 
WORKED ON THIS NETWORK OR THE DOCUMENTATION AT ANY PRIOR 
POINT.



STORY TIME



SO LONG! 
ALL THE DOCUMENTATION IS ON THE 

NETWORK DRIVE…





RESOURCES != 
SERVICES



RESOURCES AND SERVICES

RESOURCES AND SERVICES ARE INHERENTLY DIFFERENT

▸ Resources are assigned, and have life cycles 

▸ Resources can have pools, assignment policies 

▸ Services include resources and connections between them 

▸ Resources are owned by services 

▸ Services are owned by products and customers (or infra)



TRIBAL KNOWLEDGE
RESOURCE DOCUMENTATION

+



THE GOAL

SEARCHABLE SERVICE 
DOCUMENTATION



APPROACH

1. Write a Nokia SROS parser 

2. Write a backend to store it in 

3. Write a pretty front-end 

4. ??? 

5. Profit!



PARSING THE CONFIGURATIONS
STEP 1



WRITING A PARSER

THIS TOOK A FEW ATTEMPTS… (ACTUAL SCREENSHOT)



FIRST VERSION

LOTS OF REGEX



TEXT

BUT BECAME BETTER IN THE END



PROBABLY DON’T WRITE YOUR OWN 
PARSER

TAKEAWAYS



BETTER…

POSSIBLY BETTER WAYS

▸ Netconf/YANG models where supported 

▸ TextFSM 

▸ show configuration | display json



THE INVENTORY
STORING THE PARSED DATA



THE BACKEND

DJANGO

▸ Easy to write 

▸ Simple ORM 

▸ Django-Rest-Framework for easy REST 

▸ Alternatives exist, but ease is king



BACKEND TAKEAWAYS

SOME LESSONS

▸ Use natural keys when possible! 

▸ If hostname is unique, it’s the key 

▸ Beware of human input errors 

▸ Interface “int-1/2/3:10 “ is not the same as “int-1/2/3:10” 

▸ Beware of things that ought to be unique, but aren’t 

▸ In SROS logical interfaces can exist twice if one has no physical interface 
assigned - how to resolve in a parser?



TEXT

DEVELOPMENT STAGES



TEXT

FINAL ARCHITECTURE



SOURCE OF TRUTH

▸ Unless you have very strict control over your data, your network is ALWAYS the 
source of truth 

▸ This piece of software is not yet capable of provisioning 

▸ Maybe later… 

▸ It’s an excellent reference for the source of truth though



NEXT STEP

THE GUI



NEXT STEP

THE GUI

‣ Written using a modern javascript framework (Vue) 

‣ Using pre-made UI components for easy, pretty styling (Vuetify) 

‣ Interacting with the backend through REST



TEXT

NODE OVERVIEW



TEXT

SERVICE OVERVIEW



TEXT

DIAGRAMS



TEXT

DIAGRAMS

▸ You can see an autogenerated diagram 

▸ It shows nodes and interfaces for each VRF 

▸ Ordered per site 

▸ Using Dagre-d3 library



TEXT

BGP CONFIG



TEXT

L2VPN DIAGRAMS



TEXT

L2VPN DIAGRAMS

▸ L2VPNs are more complicated 

▸ Graphing pseudowires between nodes 

▸ Many sites become hard to read 

▸ but it’s “good enough”



SEARCHING!



SEARCHING!

▸ You can search for either text strings or IP resources 

▸ IP subnets allow you to pull a list of all more specifics in use in the network.



TEXT

REPORTS



TEXT

REPORTS

▸ This report shows all resources using more specifics from a supernet 

▸ Returns Interfaces, Prefix Lists, Static Routes



TEXT

TAKEAWAYS

▸ You don’t have to write the GUI as a standalone thing 

▸ REST API is incredibly handy! 

▸ Diagrams aren’t that complicated if the target is “good enough”



REST EXAMPLE

REAL WORLD EXAMPLE OF REST USAGE



TEXT

CONCLUSIONS

▸ It is indeed possible to create service documentation automatically 

▸ It can be done quite a lot simpler than I’ve done here as well 

▸ This tool has become extremely useful for everyday operations 

▸ I’m looking in to which components I can open source (if any)



Thank you! 

QUESTIONS?


